<img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=2006193252832260&amp;ev=PageView&amp;noscript=1">

Make Artificial Intelligence Your Competitive Advantage

Plan, pilot, and scale marketing AI effectively and efficiently with strategic consulting from the Marketing AI Institute.

Paul Roetzer, Founder and CEO, Marketing AI InstituteArtificial intelligence gives brands the power to drive productivity, profitability, and performance. The early adopters will have a distinct, and potentially insurmountable, competitive advantage.

But AI in marketing is a crowded and confusing space, with lots of hype and buzzwords. It’s hard for marketers to find the AI technologies they can trust to move their brands, and careers, forward.

We’re here to help.

We launched the Marketing Artificial Intelligence Institute in November 2016 with the vision to make AI more actionable and approachable for modern marketers.

Since that time, our team has published 500+ articles that teach marketers how to plan, pilot and scale marketing AI effectively and efficiently. And our founder, Paul Roetzer, has delivered 70+ AI keynotes and workshops at industry conferences and corporate events around the world, and garnered dozens of media placements as a thought leader in the space.

The Institute reaches and influences marketing leaders with 15,000+ website visitors per month (+54% YOY), and 12,000+ subscribers (+100% YOY).

Our inaugural Marketing AI Conference (MAICON) in July 2019 drew 300+ attendees from 12 countries and featured more than 50 speakers from organizations such as Conversica, Facebook, Grant Thornton, HubSpot, IBM, MIT Technology Review, Publicis Sapient, SoftBank Robotics, The Natori Company and Yext.

In the course of our work, we’ve interviewed and written spotlights on 60+ AI-powered vendors with more than $1 billion in total funding. We’re tracking 1,700+ sales and marketing AI companies with combined funding north of $6 billion.

In short, we’ve developed unparalleled knowledge about AI and its potential for enterprises. And we have an extensive network of experts and vendors we can draw from to solve problems and build competitive advantages for our clients.

While AI marketing technologies are potentially years away from self-running, self-improving autonomous systems, many AI tools available today can still have massive impact on your business.

You can turn AI into your competitive advantage with strategic consulting from the Marketing Artificial Intelligence Institute.

We offer two standard consulting models for planning, piloting, and scaling marketing AI within organizations: the Problem-Based Model and the Use Case Model. See below for details on both models.

Fill out the form below to get started.

Overview of AI Consulting & Services

1) The Problem-Based Model

In the problem-based model, the client has a known pain point, a challenge that they believe may be solved more efficiently, and at scale, with AI.

For example: Organic traffic is flat the last 12 months despite a 2x increase in blog posts and $100,000 in additional marketing budget dedicated to content.

Our team of marketing strategists, data scientists, and machine learning engineers follow a fact-based, hypothesis-driven methodology to solve the problem.

The 10 steps in the problem-based consulting model are broken into two phases: Discovery and Planning. Phase 1 Discovery defines and validates the problem. Phase 2 establishes the strategic plan to resolve it.

The end deliverable is a final report with key findings and recommendations, and an implementation plan that outlines recommended tools, and details the projected roadmap, timelines, and costs.

2) The Use-Case Model

The use-case model is ideal for identifying AI pilot projects, or to drive efficiency and performance of existing activities that are known to consistently require significant time and money.

In steps 1 - 4 we narrow the focus down to a maximum of 10 potential use cases by considering two primary factors:

  • The value to intelligently automate all or portions of that activity, with value being defined by potential time and money saved, and the increased probability of achieving business goals.
  • The ability to intelligently automate the activity, based on existing AI tech, or solutions that could be built with the right resources.   


A single use case is selected in step 5, and then steps 6 - 10 determine the action plan moving forward for that use case. If more than one use case will be pursued, steps 6 - 10 are repeated for each use case.

The end deliverable is a final report with key findings and recommendations, and an implementation plan that outlines recommended tools, and details the projected roadmap, timelines, and costs for a single use case.

Fill out the form below to get started.