<img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=2006193252832260&amp;ev=PageView&amp;noscript=1">

3 Min Read

Klevu Uses Artificial Intelligence to Help Ecommerce Stores Sell More

Featured Image

Wondering how to get started with AI? Take our on-demand Piloting AI for Marketers Series.

Learn More

We live in an era where we welcome, and even expect, brands to recommend additional products we might like when shopping online. With artificial intelligence, personalized recommendations have the potential to go supersonic as AI systems use tons of data about your habits to learn your preferences.

Klevu ( @Klevusearch ) is an AI-powered ecommerce search solution that uses natural language processing (NLP) and machine learning to assess customer searches and deliver additional recommendations for products. The result? Consumers find exactly what they’re looking for and things they never knew they wanted, boosting revenue.

We interviewed Klevu’s North America business development manager Miles Tinsley (LinkedIn) to better understand how Klevu works.

 

In a single sentence or statement, describe Klevu?

Klevu is an AI-powered ecommerce search solution, designed to drive more revenue for mid-level and enterprise-level online retailers through enhanced accuracy and merchandising capabilities.

How does Klevu use artificial intelligence (i.e. machine learning, natural language generation, natural language processing, deep learning, etc.)?

Natural language processing (NLP) is one of the core components of Klevu, helping us to extract more meaning and context from search queries and match terms to results that other technologies are unable to match. You can see an example of how NLP can support search on the Zimmermann store (a Klevu client) below. As you can see, the product names don’t contain the word “shoe,” but the system is able to understand which products are shoes.

Klevu also uses machine learning to promote products based on how users are interacting with them, providing more real-time promotion of items based on their popularity and effectiveness. The key interactions that Klevu uses are completed purchases, add-to-carts, and clicks. These actions give us an understanding of popularity. This gives us a picture of short-term and long-term popularity and allows us to add a layer of rankings on top of just boosting specific categories or items.

What do you see as the limitations of artificial intelligence as it exists today?

I will be specific here to online retail and highlight three points:

First, AI is very deep and wide in terms of possibilities of optimizations in retail. It is evident that online retailers want to bring natural shopping experiences to shoppers, but AI tools (for example, chatbots) lack a very important piece at the moment, which is the connection to the catalog and queries.

Second, a limitation in my personal view is around productization. There are some fantastic R&D level innovations out there in AI for retail, but a proper productization is lacking.

Third, there is lot to do when it come to understanding unstructured data (examples include search queries, catalog descriptions, or product reviews) and extracting relevance from this data.

What do you see as the future potential of artificial intelligence in marketing and sales?

The future of AI is geared towards personalisation at scale. Every shopper has several touch points, which could range from Facebook to email. The generic marketing or sales techniques that target multiple touch points without proper context and personalisation will not be around for long.

From a software-as-a-service point of the view, there is immense scope for technologies that help decision makers find what they’re looking for. Technology alone is just one piece of the puzzle, a solid productization will be the key for long-term sustainability in AI-led marketing and sales. Access to new information and exploiting of information from ecommerce platforms will also open huge opportunities for AI in marketing and sales.

What makes Klevu different than competing or traditional solutions?

Generally, it’s the two things we’ve already mentioned: the NLP and self-learning capabilities. Our use of NLP in particular allows us to go a lot deeper in matching products to queries, which has helped us win a lot of RFPs and split tests.

Other key aspects that differentiate us include:

  • Search merchandising capabilities (boosting specific products and categories, etc.)
  • Our reporting dashboard
  • The integration (we have plug and play integrations with Magento 1, Magento 2, and Shopify and we can integrate with any other platform relatively quickly and easily as well)
  • Our support (this is something we’re very proud of)

Who are your prototype customers in terms of company size and industries?

Klevu is suitable for ecommerce stores of all sizes, however the area where we achieve the biggest uplifts tends to be with B2B merchants and large catalog merchants, purely because this is where the NLP side of things adds the most value. For retailers with lots of more complex and long tail search queries, the NLP side of things helps to understand more and, as a result, serve more accurate products / information.

Examples of large catalog stores we work with include:

  • Baby Bunting
  • Lecot Raadschelders
  • Helly Hansen
  • Bauhaus
  • Yamaha MusicSoft

What are the primary use cases of Klevu for marketers and sales professionals?

From a marketing perspective, we have a very strong reporting offering, which helps to provide more detail around queries that are driving more sales, which regions are driving the most search-led revenue, the products that are selling most, etc. Marketers are then able to take this data and boost specific products / categories accordingly to maximise sales. We also provide various other features that add value for marketers, such as the ability to serve banners for different queries (promote new ranges / products etc), the ability to quickly boost specific lines and the ability to serve different types of content (such as buying guides or blog posts).

Any other thoughts on AI in marketing, or advice for marketers who are just starting to explore the possibilities of AI?

AI can provide a better shopping experience, as long as the context is properly applied. It is also important to give time to AI and these kinds of technologies. You can’t expect miracles from the start. Finally, as with any software you adopt, it’s worth looking at its technical architecture in terms of adaptability, flexibility, and scalability.

Related Posts

Turn Google Analytics Data into Actionable Recommendations with AI

Paul Roetzer | June 20, 2021

Company Spotlight: PaveAI. Use machine learning and data science to turn Google Analytics data into actionable recommendations and reports.

How to Predict Consumer Behavior and Recommend Products with AI

Paul Roetzer | December 18, 2019

Xineoh uses AI, including deep learning, simulation, and optimization algorithms, to predict consumer behavior. Here's how.

This Startup Provides 5X ROI for Small Businesses Thanks to Intelligent Automation

Paul Roetzer | July 25, 2017

eRelevance Corporation uses intelligent marketing automation to generate an average of 5X ROI for SMBs. Here’s how.